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In this paper, X-ray and �-ray propagation in crystals having a constant strain

gradient and flat or cylindrical surfaces is investigated. When a displacement

field is present, the Takagi–Taupin equations are solved either by the Riemann–

Green method or by a numerical method. The results are applied to study

the operation of a double-crystal Laue–Laue diffractometer having a flat

collimating crystal followed by a bent analyzer crystal. In particular, the effect of

the analyzer strain on the location of the diffraction peaks in the dispersive and

non-dispersive set-up is examined, thus confirming the previously reported peak

location as being set only by the diffracting-plane spacing on the analyzer

entrance surface.

1. Introduction

The main purpose of this paper is to verify the soundness of

our previously published work (Mana et al., 2004a,b). On that

occasion we studied how a constant strain gradient in the

rotating crystal of a double-crystal diffractometer affects the

instrument operation. The result of that investigation showed

that the position of the Bragg peaks depends only on the

diffracting-plane spacing on the crystal entrance surface.

However, to simplify the problem, we had then assumed that

all the crystal surfaces were rigorously flat. Since subsequent

experiments, using cylindrically bent crystals and both X- and

�-rays to test that rather surprising result, delivered contra-

dictory results that are still under examination (Kessler, 2007;

Massa et al., 2005), we were urged to investigate propagation

in bent crystals in more detail. An additional reason was due

to the interest in efficient Laue–Laue bent-crystal diffract-

ometers for �-ray spectroscopy of nuclei having a very high

thermal neutron cross section (Materna et al., 2006).

For these reasons we extend here our previous analysis by

taking account of the curvature of the crystal surfaces and by

simulating diffraction in both the non-dispersive and disper-

sive set-ups. In x2 we solve, using the Riemann–Green method

in Cartesian coordinates, the Takagi–Taupin equations for the

propagation of X- and �-rays in bent crystals; we indicate also

how the crystal surfaces are modelled, what choice of the

reference perfect lattice we have adopted and what kinds of

distortion of the cylindrically bent crystal we have considered.

x3.1 and x3.2 deal with two cases when the crystal surfaces, on

which the initial conditions have to be assigned, are flat or

cylindrical, respectively. While in the first case the solutions

are known (Authier & Simon, 1968; Mana & Palmisano, 2004),

and are re-examined here to illustrate our formalism, we are

not aware of solutions when the crystal surface is a cylinder. In

fact, in the literature the case of a curved crystal surface in the

macroscopic sense is just hinted at by Takagi (1969) by means

of curvilinear coordinates. Subsequently, Olekhnovich &

Olekhnovich (1980) carried out the calculation of the profile

function of the scattering curve for a crystal in the form of a

cylinder whose size does not exceed the extinction length.

Later, Thorkildsen & Larsen (1998) observed that it is, in

principle, possible to obtain analytical expressions for the

primary extinction factor in perfect crystals having a circular

diffraction plane. Podorov & Förster (2000) have examined

the case when the illuminated crystal is asymmetrically cut

and elastically bent. In x4 we apply our results to a double

diffractometer and, to corroborate them, in x5 we solve

numerically the Takagi–Taupin equations in polar coordinates

for different geometrical and physical parameters.

2. Takagi–Taupin equations for distorted crystals

In order to study X-ray propagation through a distorted

crystal in the Laue case, we shall apply the Takagi–Taupin

equations (Takagi, 1962, 1969; Taupin, 1964; Authier, 2001;

Mana & Montanari, 2004) in the two-wave approximation of

the dynamical theory of X-ray diffraction. Since only cylind-

rical geometries will be considered, we shall use a two-

dimensional model with a reference frame having the x and z

axes lying in the reflection plane. Lattice distortion is

described by the displacement field uðx; zÞ, which gives the

difference between the actual distorted lattice and a reference



perfect lattice identified by the reciprocal vector h0, which will

be chosen at our convenience. Hence, we anchor the reference

frame to it and set the x axis parallel or antiparallel to h0. If

now we introduce the following Ewald expansion for the

dielectric displacement vector D = Dŷy, in � polarization,

D ¼ Do exp ðiKo � rÞ þDh exp i Kh � r� h0 � uð Þ
� �

; ð1Þ

where Do and Dh are slowly varying amplitudes, the Takagi–

Taupin equations can be written as

� i ŝso � rDo ¼
K�o

2
Do þ

K��h

2
Dh; ð2aÞ

� i ŝsh � rDh ¼
K�o

2
Dh þ

K�h

2
Do þ ŝsh � rðh0 � uÞ

� �
Dh: ð2bÞ

In equations (2a) and (2b),

ŝso ¼ K̂Ko ¼ �x̂x sin �B þ ẑz cos �B; ð3aÞ

ŝsh ¼ K̂Kh ¼ x̂x sin �B þ ẑz cos �B ð3bÞ

are the unit propagation vectors, h0 = x̂x2K sin �B, Kh = Ko þ h0,

K = kKok = kKhk = 2��=c is the modulus of the wavenumber

vector Ke of the incoming radiation (with frequency �), �B is

the Bragg angle (with a sign), and the complex parameters �o,

�h and ��h are the Fourier components of electric suscept-

ibility; in our case ��h = �h. The usual resonance term �h =

K�� sin 2�B, where �� indicates the departure angle from

Bragg’s law, is not included in equation (2b); the reason for

this lies in our particular choice of the z-axis direction. Often it

is set orthogonal to the crystal surface because, in such a way,

the boundary conditions for the amplitudes at the entrance

surface are easily imposed. Hence, if the Bragg planes are not

orthogonal to the crystal surface (asymmetric Laue case), the

�h term appears in the right-hand side of equation (2b).

However, nothing prevents us from choosing the z axis

differently, for instance, to make the reference perfect lattice

resonance error equal to zero. For a flat crystal this choice may

appear inconvenient but, as we generally want to consider

arbitrary non-flat surfaces, it does not add additional compli-

cations. Furthermore, it is worth noting that also in the

asymmetric Laue case we can consider a reference perfect

lattice whose Bragg planes are orthogonal to the crystal

surface, so that, in the perfect crystal equations, the resonance

error is zero. However, the real Bragg planes are now

deformed, that is, tilted, and the resonance error reappears as

a deformation term in equation (2b).

We shall consider an infinite crystal slab, the surfaces of

which are smooth curves (Fig. 1), with arbitrary, C1 and

bijective parametrization, that we denote � on the entrance

surface and � on the exit surface. By imposing that at each

point of the entrance surface the o component of the Ewald

expansion [equation (1)] is equal to the incoming wave

Deðx; zÞ = Aðx; zÞ expðiKe � rÞ, the initial conditions for solving

equations (2a) and (2b) are therefore

Doðx; zÞj� ¼ �ðx; zÞj�; ð4aÞ

Dhðx; zÞj� ¼ 0; ð4bÞ

where �ðx; zÞ = Aðx; zÞ exp½iðKe � KoÞ � r�.

Equations (2a) and (2b) can be simplified by introducing

two new amplitudes, do and dh, defined as

do;h ¼ exp

�
�i

K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� r

�
Do;h: ð5Þ

By substituting (5) for Do;h into (2a) and (2b) we obtain

� i ŝso � rdo ¼
K��h

2
dh; ð6aÞ

� i ŝsh � rdh ¼
K�h

2
do þ ŝsh � rðh0 � uÞ

� �
dh; ð6bÞ

with the initial conditions

doðx; zÞj� ¼ exp

�
�i

K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� r

�
�ðx; zÞj�; ð7aÞ

dhðx; zÞj� ¼ 0: ð7bÞ

As in the cylindrical crystals the geometry is somewhat

elaborate, in the following subsections we illustrate the main

underlying assumptions.

2.1. Crystal surfaces

Let us now exemplify how cylindrical surfaces are modelled.

The curvature centre can be located either on the source side

or on the opposite side, with R0 and R0 þ T (T denoting the

crystal thickness) being the curvature radii of the entrance

surface, respectively. A crystal having cylindrical surfaces will

be called concave (Fig. 2, left) when its concavity is towards

the source, and convex otherwise (Fig. 2, right); the position of

the source is the same as shown in Fig. 3.

In the concave case, by locating the reference-frame origin

at the curvature centre and omitting the double-prime

symbols on x and z, the parametric components of the surfaces

are �
�xð�Þ ¼ R0 sin �
�zð�Þ ¼ R0 cos �

ð8Þ

�
�xð�Þ ¼ ðR0 þ TÞ sin �
�zð�Þ ¼ ðR0 þ TÞ cos �

; ð9Þ
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Figure 1
Example of smooth sections describing the entrance surface (�) and the
exit surface (�) in the reference and/or analyzer crystal.



where � 2 ½�1; �2� and � 2 ½�1; �2�. In the convex case, by

locating the reference-frame origin again at the curvature

centre, the surface components are�
�xð�Þ ¼ ðR0 þ TÞ sin �
�zð�Þ ¼ ðR0 þ TÞ cos �

; ð10Þ

�
�xð�Þ ¼ R0 sin �
�zð�Þ ¼ R0 cos �

; ð11Þ

where � 2 ½�þ �1; �þ �2� and � 2 ½�þ �1; �þ �2�. In both

cases (concave and convex), the inward and outward normals

to the entrance and exit surfaces are, respectively,�
ðn̂n�Þxð�Þ ¼ sin �
ðn̂n�Þzð�Þ ¼ cos �

ð12Þ

and �
ðn̂n�Þxð�Þ ¼ sin �
ðn̂n�Þzð�Þ ¼ cos �

: ð13Þ
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Figure 3
Layout of a two-crystal diffractometer in non-dispersive geometry. On the left, the analyzer crystal surface is flat and on the right it is cylindrically bent.
The symbol I indicates the incident beam, T and R are the beams transmitted and reflected, respectively, by the collimating crystal, and RT and RR are
the beams transmitted and reflected, respectively, by the crystal. The unit vectors ŝso;h are defined in equations (3a) and (3b). The angle of incidence � is
positive (� = �B) on the collimating crystal and negative (� = ��B) on the analyzer crystal.

Figure 2
Two different frame references are shown, concerning the entrance surface (x 0, z 0) and the centre of curvature of the analyzer crystal (x 0 0, z 0 0),
respectively; concave case (left) and convex case (right).



2.2. Crystal rotation

With a rotated crystal, since the reference perfect lattice can

be chosen at our convenience, we make it immovable, no

matter what the crystal rotation might be; consequently, a

rotation is nothing more than a very special kind of distortion.

Hence, our Ansätze to study X-ray propagation in a rotated

crystal are firstly, h0 is independent of rotations; secondly, the

rotation term, the origin of the reference frame being on the

entrance surface,

urot
ðx; zÞ ¼ ðx̂x; ẑzÞ

��
cos 	 sin 	
� sin 	 cos	

�
�

�
1 0

0 1

���
x

z

�

reduces to

urotðx; zÞ ’ 	zx̂x� 	xẑz; ð14Þ

where 	 is the rotation angle (clockwise oriented); and, thirdly,

the crystal surfaces are left unchanged by rotations. Here the 	
term plays the same role as �� in the resonance error �h.

2.3. Lattice distortion

We shall consider two distortions, ufan;1ðx; zÞ and ufan;2ðx; zÞ,

describing cylindrically bent crystals according to the finite-

element simulation (Mana et al., 2004a). If we exclude the

term ufan;i
z ðx; zÞẑz, which is orthogonal to h0, we have two pure

displacements in the x direction: fan-down,

ufan;1ðx; zÞ ¼
xðz� zmÞ

R0 þ zm

x̂x; ð15aÞ

and fan-up,

ufan;2ðx; zÞ ¼
xðzm � zÞ

R0 þ zm

x̂x; ð15bÞ

where zm = T/2. We have chosen the x axis (now coincident

with the x0 axis in Fig. 2 or in the upper part of Fig. 3) and the

reference perfect lattice so that ufan;iðx; zmÞ = 0. In (15a) the

displacement is such that all the lattice planes are directed

towards a point at distance R0 from the entrance surface and

the points at z = zm are undisplaced (left upper part of Fig. 3).

In (15b) the lattice planes are directed towards a point at

distance R0 from the exit surface. For a rotated crystal, the

total displacement field utot;iðx; zÞ, including both equations

(15a) and (14), and omitting the ẑz components, is

utot;iðx; zÞ ¼ ufan;iðx; zÞ þ urotðx; zÞ

¼ gðiÞ
xðz� zmÞ

R0 þ zm

x̂xþ 	z x̂x; ð16Þ

where gð1Þ = 1, gð2Þ = �1, and the approximation

ufan;i
x ðx; zÞ cos 	 ’ ufan;i

x ðx; zÞ is applied.

3. Propagation in distorted crystals

Equations (15a) and (15b) approximate the displacement

field, characterized by a constant strain gradient, in crystals

having their surfaces flat or cylindrical.

3.1. Flat crystal surfaces

In the simplest case of flat external crystal surfaces (Fig. 3,

upper left), the Takagi–Taupin equations are

� sin �B

@d ðiÞo

@x
þ cos �B

@d ðiÞo

@z
¼ i

K��h

2
d
ðiÞ
h ð17aÞ

sin �B

@d ðiÞh

@x
þ cos �B

@d ðiÞh

@z
¼

i
K�h

2
d ðiÞo þ i2K sin �B

�
gðiÞ
ðz� zmÞ

R0 þ zm

sin �B

þ

�
gðiÞ

x

R0 þ zm

þ 	

�
cos �B

�
d
ðiÞ
h ð17bÞ

with the initial conditions

d ðiÞo ðx; 0Þ ¼ �ðxÞ; ð18aÞ

d
ðiÞ
h ðx; 0Þ ¼ 0; ð18bÞ

where we dropped the prime on x and z and we assumed that

the external crystal surfaces were orthogonal to ŝso þ ŝsh

(symmetrical Laue geometry).

The coupled equations (17a) and (17b) can be simplified by

a change of dependent variables. Let us introduce the two

unknowns ~DD ðiÞo and ~DD ðiÞh defined by the expression

~DD ðiÞo;h ¼ exp �if ðiÞ2K sin �B

� �
d
ðiÞ
o;h; ð19Þ

where the function f ðiÞðx; zÞ is defined as

f ðiÞðx; zÞ ¼ gðiÞ
1

R0 þ zm

�
1

4

�
x

sin �B

þ
z

cos �B

�2

sin �B cos �B

�
zm

2

�
x

sin �B

þ
z

cos �B

�
sin �B

�

þ
	

2

�
x

sin �B

þ
z

cos �B

�
cos �B: ð20Þ

If we observe that�
sin �B

@

@x
þ cos �B

@

@z

�
f ðiÞðx; zÞ ¼

sin �B gðiÞ
ðz� zmÞ

R0 þ zm

þ cos �B

�
gðiÞ

x

R0 þ zm

þ 	

�
ð21Þ

and �
� sin �B

@

@x
þ cos �B

@

@z

�
f ðiÞðx; zÞ ¼ 0; ð22Þ

then substitution of (19) into (17a) and (17b) gives the Takagi–

Taupin equations in the unperturbed form,

� sin �B

@ ~DD ðiÞo

@x
þ cos �B

@ ~DD ðiÞo

@z
¼ i

K��h

2
~DD ðiÞh ; ð23aÞ

sin �B

@ ~DD ðiÞh

@x
þ cos �B

@ ~DD ðiÞh

@z
¼ i

K�h

2
~DD ðiÞo : ð23bÞ

As a consequence of equation (19), the new initial conditions

on the entrance surface z = 0 are
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~DD ðiÞo ðx; 0Þ ¼ exp �if ðiÞðx; 0Þ2K sin �B

� �
�ðxÞ; ð24aÞ

~DD ðiÞh ðx; 0Þ ¼ 0: ð24bÞ

By the Riemann–Green method (Authier & Simon, 1968;

Takagi, 1969; Sommerfeld, 1964) we can find a solution by

quadrature for the system [equations (23a), (23b)] with initial

conditions [equations (24a), (24b)]

~DD ðiÞo;hðx; zÞ ¼
Rþ1
�1

Go;h x� x0; zð Þ

� exp �if ðiÞðx0; 0Þ2K sin �B

� �
� x0ð Þ dx0: ð25Þ

Following the notation of Palmisano & Zosi (2005), the

kernels Go and Gh are

Goðx; zÞ ¼ 
ðxþ z tan �BÞ �
K

4j sin �Bj
�h��hð Þ

1=2

�Hðzj tan �Bj þ xÞHðzj tan �Bj � xÞ

�
z tan �B � x

z tan �B þ x

� �1=2

� J1

�
K

2j sin �Bj
�h��hð Þ

1=2 z2 tan2 �B � x2
	 
1=2

�
ð26Þ

and

Ghðx; zÞ ¼
i

4

K�h

j sin �Bj
H zj tan �Bj þ xð ÞH zj tan �Bj � xð Þ

� J0

�
K

2j sin �Bj
�h��hð Þ

1=2
z2 tan2 �B � x2
	 
1=2

�
: ð27Þ

In (26) and (27), HðzÞ is the Heaviside function and J0ðzÞ and

J1ðzÞ are the Bessel functions of the first kind and order 0 and

1, respectively. Therefore the solution to Takagi–Taupin

equations (17a) and (17b) with initial conditions [equations

(18a), (18b)] is

d
ðiÞ
o;hðx; zÞ ¼ exp if ðiÞðx; zÞ2K sin �B

� � Rþ1
�1

Go;hðx� x0; zÞ

� exp �if ðiÞðx0; 0Þ2K sin �B

� �
�ðx0Þ dx0: ð28Þ

We see from (28) that the effect of a constant strain gradient

has been reduced to a similarity transformation of the Go and

Gh kernels (Mana & Palmisano, 2004). Equations (5) and (28)

show that the intensities of the transmitted and diffracted

beams D ðiÞo ðx; zÞ and D
ðiÞ
h ðx; zÞ on the exit surface z ¼ T are

I
ðiÞ

o;hð	Þ ¼
Rþ1
�1

jD
ðiÞ
o;hðx;TÞj2 cos �B dx

¼
Rþ1
�1

exp �K=ð�oÞT= cos �B

� �
�

���� Rþ1
�1

Go;hðx� x0;TÞ exp �if ðiÞðx0; 0Þ2K sin �B

� �

��ðx0Þ dx0
����

2

cos �B dx; ð29Þ

where =ð�oÞ is the imaginary part of �o. Eventually, substitu-

tion of (20) into (29) gives

I
ðiÞ

o;hð	Þ ¼
Rþ1
�1

exp½�K=ð�oÞT= cos �B�

��� Rþ1
�1

Go;hðx� x0;TÞ

� exp

�
�i2K sin �B

cos �B

R0 þ zm

�
1

4
gðiÞ

x02

sin �B

�
1

2
x0
�

gðiÞ
zm

cos �B

�
R0 þ zm

sin �B

	

���
�ðx0Þ dx0

���2
� cos �B dx: ð30Þ

Equation (30) gives the rocking curves I
ðiÞ

o;hð	Þ when the crystal

is distorted by the displacement field (15a) or (15b); the

external crystal surfaces are flat and �ðxÞ is the complex field

amplitude of a generic incoming beam. Additionally, and

generally, the effect of the displacement fields [equations

(15a), (15b) or (16)] on the intensity I
ðiÞ

o;h in (30) is seen to

consist of a phase redefinition of the initial condition �ðxÞ.
Evaluation of (30) in the limit with R0 tending toþ1 gives the

rocking curve of a perfect analyzer crystal. With the variable

change 	 = �		 ðiÞ þ 	0, where �		 ðiÞ is

�		 ðiÞ ¼ gðiÞ
zm

R0 þ zm

tan �B ð31aÞ

¼ �
@ufan;i

x

@x
ðx; 0Þ tan �B; ð31bÞ

equation (30) can be reduced to the simpler form

I
ðiÞ

o;hð �		
ðiÞ
þ 	0Þ ¼

Rþ1
�1

exp �K=ð�oÞT= cos �B

� �
�

��� Rþ1
�1

Go;hðx� x0;TÞ

� exp

�
�i2K sin �B

cos �B

R0 þ zm

�
1

4
gðiÞ

x02

sin �B

þ
1

2
x0

R0 þ zm

sin �B

	0
��

�ðx0Þ dx0
���2 cos �B dx: ð32Þ

3.2. Cylindrical surfaces

By application of the Riemann–Green method, the solution

of system (17a)–(17b), with the initial conditions (7a)–(7b), is

the flux integral

d
ðiÞ
o;hðx; zÞ ¼ exp if ðiÞðx; zÞ2K sin �B

� � R
�

Go;hðx� �x; z� �zÞ

� exp �if ðiÞ �x;�z

	 

2K sin �B

� �
� exp

�
�i

K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� ð�xx̂xþ �zẑzÞ

�

��ð�x;�zÞ
ŝso � n̂n�

cos �B

d�; ð33Þ

which generalizes (28). In (33) the prime on x and z has been

omitted (see upper right part of Fig. 3), the unit vector n̂n� is

the inward normal to the � surface, �x and �z are the surface

parametric components and d� is a shorthand form for

jd�=d�j d�. Let n̂n� be the outward normal to the exit surface

�. From (5), (33) and (20) the intensity of the forward

transmitted and diffracted beams is
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I
ðiÞ

o;hð	Þ ¼

Z
�

jD
ðiÞ
o;hð�Þj

2 ŝso;h � n̂n� d�

¼

Z
�

exp

�
�K=ð�oÞ

�z

cos �B

�����
Z
�

Go;hð�x � �x;�z � �zÞ

� exp

�
�

i2K sin2 �B cos �B

R0 þ zm

�
gðiÞ

4

�
�x

sin �B

þ
�z

cos �B

�2

�
1

2

�
�x

sin �B

þ
�z

cos �B

��
gðiÞ

zm

cos �B

�
R0 þ zm

sin �B

	

���

� exp

�
�i

K�o

2

�z

cos �B

�

��ð�x;�zÞ
ŝso � n̂n�

cos �B

d�

����
2

ŝso;h � n̂n� d�: ð34Þ

In the concave case (Fig. 2, left), by imposing the condition

that the reference-frame origin is located on the entrance

surface, then the parametric equations of the external surfaces

� and � become �
�xð�Þ ¼ R0 sin �;
�zð�Þ ¼ R0 cos � � R0

ð35Þ

and �
�xð�Þ ¼ ðR0 þ TÞ sin �;
�zð�Þ ¼ ðR0 þ TÞ cos � � R0;

ð36Þ

then (34), using the definitions (31a), (12)–(13) and (35)–(36),

can be rewritten as

I
ð1Þ
o;h �		ð1Þ þ 	0
	 


¼

Z�2

�1

exp

�
�K=ð�oÞ

ðR0 þ TÞ cos � � R0

cos �B

�

�

�����
Z�2

�1

exp

�
�i

K�o

2
R0

cos � � 1

cos �B

�
� R0 sin �;R0ðcos � � 1Þ
� �

� exp

�
�i2K sin2 �B cos �B

R0

R0 þ zm

�
sin �

sin �B

þ
cos � � 1

cos �B

�

�

�
gð1Þ

R0

4

�
sin �

sin �B

þ
cos � � 1

cos �B

�
þ

1

2

R0 þ zm

sin �B

	0
��

�Go;h ðR0 þ TÞ sin � � R0 sin �; ðR0 þ TÞ cos � � R0 cos �
� �

�
cosð�B þ �Þ

cos �B

R0d�

�����
2

ŝso;h � n̂n�ðR0 þ TÞ d�; ð37Þ

where

ŝso;h � n̂n� ¼

�
cosð�B þ �Þ o wave

cosð�B � �Þ h wave:
ð38Þ

In the convex case (Fig. 2, right), by imposing the condition

that the reference-frame origin is located on the entrance

surface, the parametric equations of the external surfaces �
and � become �

�xð�Þ ¼ ðR0 þ TÞ sin �
�zð�Þ ¼ ðR0 þ TÞðcos � þ 1Þ

ð39Þ

and

�
�xð�Þ ¼ R0 sin �
�zð�Þ ¼ R0 cos � þ R0 þ T;

ð40Þ

then, by following the same procedure, that is, with the use of

definitions (31a), (12)–(13) and (39)–(40), equation (34) can

be rewritten as

I
ð2Þ
o;h �		ð2Þ þ 	0
	 


¼

Z�þ�2

�þ�1

exp

�
�K=ð�oÞ

R0 cos � þ R0 þ T

cos �B

�

�

�����
Z�2

�1

Go; h R0 sin ��ðR0þTÞ sin �;R0 cos ��ðR0þTÞ cos �
� �

� exp

�
� i2K sin2 �B cos �B

R0 þ T

R0 þ zm

�
sin �

sin �B

þ
cos � þ 1

cos �B

�

�

�
gð2Þ

R0 þ T

4

�
sin �

sin �B

þ
cos � þ 1

cos �B

�
þ

1

2

R0 þ zm

sin �B

	0
��

� exp

�
�i

K�o

2
ðR0 þ TÞ

cos � þ 1

cos �B

�
��½ðR0 þ TÞ sin �; ðR0 þ TÞðcos � þ 1Þ�

�
cosð�B þ �Þ

cos �B

ðR0 þ TÞ d�

�����
2

ŝso;h � n̂n�R0 d�; ð41Þ

where ŝso;h � n̂n� has the same meaning as in (38).

4. Double-crystal diffractometer

Figs. 3 and 4 show the Laue–Laue diffractometer in both the

non-dispersive and dispersive set-ups. We consider a flat

collimating perfect crystal and a monochromatic point source

located in ðL sin �B;�L cos �BÞ, where L is the distance

between the source and the entrance point of the collimating

crystal. We have chosen the vector h0 of the analyzer reference

perfect lattice equal to the vector h0 of the collimating crystal;

therefore, these two lattices have the same spacing, and when

	 = 0 they are parallel. If the two crystals have the same lattice

spacing, the analyzer rotation 	 between the non-dispersive

and dispersive geometries is equal to 2�B; a different rotation

is related to a different lattice spacing in the collimating and

analyzer crystals.

4.1. Rocking curves

Let us confine our study to the reflected beam. When we

examine equation (32) we see that, if

�ðxÞ ¼ �ð�xÞ; ð42Þ

where �ðxÞ is the amplitude of the o component of the

external field on the entrance surface of the analyzer, the

intensity profile of I
ðiÞ

h ð �		
ðiÞ
þ 	0Þ is invariant under the

	0 !� 	0 exchange, as can be easily checked by the double

substitution x0 = �~xx0; x = �~xx. This means that I
ðiÞ

h ð	Þ has a

vertical symmetry axis passing through �		 ðiÞ. Let us note that

(42) is fulfilled if the amplitude of the o component of the

incoming beam is an even function.
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The formula �		 ðiÞ= tan �B = �@ufan;i
x ðx; 0Þ=@x, obtained from

(31b), is our formulation of the ��= tan �B = ��d=d Bragg

law. It is to be noted that, if we remove the previous condition

zm = T/2, and additionally impose zm = 0 implying ufan;i
x ðx; 0Þ =

0 and, consequently, �		 ðiÞ = 0, then there is no shift of the

reflection peak with respect to the perfect-crystal case. With

crystals having cylindrical surfaces, when we introduce the

approximations cos � � cosð�B þ �Þ ’ cosð�B � �Þ ’
cosð�B � �Þ ’ cosð�B þ �Þ ’ 1 in (37) and in (41), and the

symmetry requirement in (42) is satisfied, we again conclude

that I
ðiÞ

h ð	Þ has a vertical symmetry axis passing through �		 ðiÞ =

gðiÞ tan �B zm=ðR0 þ zmÞ. The profiles obtained numerically,

without any approximation as we shall shortly discuss in x5,

are symmetric and validate the above approximation. Mana et

al. (2004a) report that, in the presence of a constant strain

gradient in the analyzer, the Laue–Laue rocking curve is

shifted by ð�d=dÞ tan �B, where the lattice strain is evaluated

on the crystal surface. However, this peak shift is not easily

measurable. Since the analyzer rotation between dispersive

and non-dispersive reflection peaks is an experimentally

observable quantity, we give now the relevant equation. In our

formalism, the o component of the analyzer crystal field co-

propagates or counterpropagates with respect to the x axis

according to the sign of �B; therefore, the exchange between

the dispersive and non-dispersive geometries corresponds to

the substitution of ��B for �B. If we observe that the non-

dispersive rocking curve peaks when 	 = �		 ðiÞð��BÞ, where �B is

the Bragg angle for the collimating crystal (Fig. 3), and we

observe as well that the dispersive one peaks when 	 =

2�B þ �		 ðiÞð�BÞ (Fig. 4), the sought formula is

�	 ðiÞ ¼ 2�B þ �		 ðiÞð�BÞ � �		 ðiÞð��BÞ ð43aÞ

¼ 2 �B þ �		 ðiÞð�BÞ
� �

ð43bÞ

¼ 2 �B �
@ufan;i

x

@x
ðx; 0Þ tan �B

� �
; ð43cÞ

where ð@ufan;i
x =@xÞðx; 0Þ is the lattice strain on the analyzer

entrance surface.

5. Numerical simulation

In order to validate our previous results we have also studied

the diffractometer operation by solving the Takagi–Taupin

equations numerically. Again we consider the two distinct
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Figure 4
Layout of a two-crystal diffractometer in non-dispersive and dispersive geometries. The symbol I indicates the incident beam, R is the beam reflected by
the collimating crystal, RRnd and RRd are the double reflected outgoing beams, the superscripts ‘nd’ and ‘d’ refer to the non-dispersive and dispersive
set-up, respectively. The unit vectors ŝso;h are defined in equations (3a) and (3b). The angle of incidence � on the collimating crystal is positive (� = �B); the
angle of incidence � on the analyzer crystal is negative for the non-dispersive set-up and positive for the dispersive set-up.



cases of flat or cylindrical analyzer surfaces. The collimating

crystal is a parallel-sided silicon slab limited by two surfaces

orthogonal to the (220) Bragg planes. The X- or �-ray source

illuminates the collimating crystal by a monochromatic

cylindrical wave Deðx; zÞ = Aðx; zÞ expðiKo � rÞ, where

Aðx; 0Þ ¼�
�ðxÞ½x� ðw=2Þ�8½xþ ðw=2Þ�8=ðw=2Þ16 if �w

2 � x � w
2

0 otherwise; ð44Þ

�ðxÞ ¼
1

4�L
exp

�
i
2�

�

cos2 �B

2L
x2

�
; ð45Þ

� = hc=E (where E is the photon energy) is the wavelength,

w=2 is the half-width on the entrance slit, and the Bragg angle

is positive. The exponents 8 and 16 in (44) render it possible

for the function to have a high order of differentiability,

making the boundary conditions smooth and the numerical

computations easier. The expression in (45) can be found in

Authier & Simon (1968). In the numerical simulation we

considered the two sets of parameters shown in Table 1; the

lower-energy value refers to the experimental set-up described

by Mana et al. (2004a), the upper by Massa et al. (2005). We

have considered silicon (220) Bragg planes and have taken the

values of the dielectric susceptibilities from Sergey Stepanov’s

X-ray Server (http://sergey.gmca.aps.anl.gov/).

As a first step we solved (17a) and (17b) for a perfect crystal

with boundary conditions [equation (44)]. Subsequently, the

reflected beam, which we shall indicate by Dcol
h ðx;TÞ, was free-

propagated rigidly from the collimating crystal onto the

entrance surface of the analyzer crystal.

5.1. Flat analyzer surfaces

In this case (see Fig. 3, left) the propagation equations of

the analyzer fields d ana; i
o ðx0; z0Þ and d ana; i

h ðx0; z0Þ are equations

(17a) and (17b), where ufan;i
x0 ðx

0; z0Þ is the displacement field in

(15a) and (15b), the Bragg angle is negative, and the initial

field values are

d ana; i
o ðx0; 0Þ ¼ d col

h ðx
0;TÞ; ð46aÞ

d ana; i
h ðx0; 0Þ ¼ 0; ð46bÞ

where, in the right-hand side of (46a), the translation of

d col
h ðx;TÞ along the x axis and the shift of the new reference-

frame origin, on the analyzer entrance surface, cancel each

other. In general, the amplitude in the ðx; zÞ reference frame

of the h wave exiting (z � T) from the collimator, and rigidly

moving along ŝsh without any wavefront distortion, is given by

d col
h ðx; zÞ ¼ d col

h x� ðz� TÞ tan �B

�� ��;T
� �

: ð47Þ

We have calculated the numerical solutions with the aid of

Mathematica (Wolfram Research, 2007); we have obtained the

same results (to within 0.1%) by performing the integration in

(28) numerically. In Figs. 5 and 6 we show the rocking curves

when the analyzer distortion corresponds to the fan-down and

fan-up cases, in both the non-dispersive and dispersive

geometries; the peak shifts agree with the values predicted by

(31a).

In Fig. 7 we have expanded the range on the mrad axis, when

no displacement field is present, just to show that the wings of

the upper curve also decrease asymptotically, although more

slowly. Two cases, calculated numerically and according to

(31a), are compared in Fig. 8, showing that the maximum

difference in �	 amounts to a few parts per 10�7. Figs. 5 and 6

require a few comments. Firstly, in contrast to experimental

observations, there is no spreading in Fig. 6; the reason for this

is that we assumed the source to be monochromatic and we

did not integrate over its linewidth.

In a non-dispersive geometry, with a perfect-crystal

analyzer having the same lattice spacing as the collimating

crystal, all rocking curves peak when 	 = 0, no matter what

the wavelength might be. On the contrary, in a dispersive

geometry the rocking curves peak when 	 = 2�Bð�Þ, thus giving

rise to a convolution integral. Secondly, we did not pay

particular attention to the crystal-field intensities; therefore,

the relative intensities of the 17 keV and 184 keV plots are

meaningless and the two curves are not comparable. Finally,

the dotted lines show only the central part of the extremely

wide 17 keV curve.

5.2. Cylindrical analyzer surfaces

In this case, we rewrote the Takagi–Taupin equations (17a)

and (17b) using polar coordinates, the reference-frame origin

being in the centre of curvature of the entrance surface �.

Hence, the new coordinates are (Fig. 2)

� ¼ x002 þ z002
	 
1=2

; ð48aÞ

’ ¼

( arctanðx00=z00Þ z00> 0

�=2 z00 ¼ 0; x00> 0

�þ arctanðx00=z00Þ z00< 0

; ð48bÞ

and the equations become

cos ð�B þ ’Þ
@d ana; i

o

@�
�

sin ð�B þ ’Þ

�

@d ana; i
o

@’
¼ i

K��h

2
d ana; i

h

ð49aÞ

cos ð�B � ’Þ
@d ana;i

h

@�
þ

sin ð�B � ’Þ

�

@d ana;i
h

@’

¼ i
K�h

2
d ana;i

o þ i2K sin �B

�
cos ð�B � ’Þ

@u ðiÞx

@�

þ
sin ð�B � ’Þ

�

@u ðiÞx

@’

�
d ana;i

h ; ð49bÞ

where the Bragg angle �B is negative in the non-dispersive case

and positive in the dispersive one. In the concave case the old

coordinates ðx0; z0Þ in terms of ðx00; z00Þ are given by (Fig. 2, left)
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Table 1
Parameters used for different energies.

Reference T (mm) L (m) w/2 (mm) E (keV) R0 (m)

Mana et al. (2004a) 0.5 1 50 17 160
Massa et al. (2005) 2.5 16 500 184 697



�
x0 ¼ x00 ¼ � sin ’
z0 ¼ z00 � R0 ¼ � cos ’� R0

ð50Þ

and in the convex case the old coordinates ðx0; z0Þ are given by

(Fig. 2, right)�
x0 ¼ x00 ¼ � sin ’
z0 ¼ z00 þ R0 þ T ¼ � cos ’þ R0 þ T:

ð51Þ

The x00 components of the total displacement fields utot;1ð�; ’Þ
and utot;2ð�; ’Þ in (16) are

utot;1
x00 ð�; ’Þ ¼ gð1Þ

�
� cos ’� R0 � zm

R0 þ zm

�
� sin ’

þ 	ð� cos ’� R0Þ ð52Þ

and

utot;2
x00 ð�; ’Þ ¼ gð2Þ

�
� cos ’þ R0 þ zm

R0 þ zm

�
� sin ’

þ 	ð� cos ’þ R0 þ TÞ; ð53Þ

which can be rewritten as

utot;i
x00 ð�; ’Þ ¼ � sin ’ gðiÞ

� cos ’

R0 þ zm

� 1

� �
þ 	� cos ’; ð54Þ

the constant 	 terms being omitted. From (7a), (7b), (47), (50)

and (51), the boundary conditions for the concave case are

d ana;1
o ðR0; ’Þ ¼ exp �i

K�o

2
R0

cos ’� 1

cos �B

� �
d col

h R0 sin ’
�

þ R0ðcos’� 1Þ tan �B;T
�
; ð55aÞ

d ana;1
h ðR0; ’Þ ¼ 0; ð55bÞ

and

d ana;2
o R0 þ T; ’ð Þ

¼ exp �i
K�o

2
R0 þ Tð Þ

cos ’þ 1

cos �B

� �
� d col

h R0 þ Tð Þ sin ’þ ð1þ cos ’Þ tan �B

� �
;T

� 

; ð56aÞ

d ana;2
h R0 þ T; ’ð Þ ¼ 0 ð56bÞ

for the convex case. Here, too, the numerical solution of (49a)

and (49b) agrees with the numerical integration of (33).

Figs. 9 and 10 show the rocking curves for a concave and

for a convex crystal, respectively, in the non-dispersive and
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Figure 6
Non-dispersive (left) and dispersive (right) rocking curves for a flat Si analyzer with a fan-up distortion. Upper and lower curves refer to the energies of
17 keV and 184 keV, respectively. Bragg planes are (220) and the relevant parameter values are given in Table 1.

Figure 5
Non-dispersive (left) and dispersive (right) rocking curves for a flat Si analyzer with a fan-down distortion. Upper and lower curves refer to energies of
17 keV and 184 keV, respectively. Bragg planes are (220) and the relevant parameter values are given in Table 1.



dispersive geometries. Also in this case the peak shifts agree

with the values obtained from (32a). By comparing the profiles

in Figs. 5 and 9 we observe a slight effect depending on the

surface curvature which, anyway, does not alter their

symmetry; furthermore, the wings of the upper curves do not

appear in the range shown; the same can be concluded from

Figs. 6 and 10.

Additionally, the figures exemplify that peak shifts, and

consequently �	, are independent of the surface geometry

(flat or cylindrical, concave or convex), but they depend only

on the entrance-surface strain �d=d. This confirms that the

flat-surface approximation used by Mana et al. (2004a) was

admissible. To check further our numerical computations, we

also examined two auxiliary cases, when the Bragg planes are

simply either contracted or expanded and when the Bragg

planes are not distorted. We have also carried out many

numerical simulations with different entrance-slit apertures;

the above conclusion were always confirmed.

6. Conclusions

We have studied X- and �-ray propagation in flat and cylin-

drically bent crystals. We have used the relevant results

to describe the operation of a Laue–Laue diffractometer

consisting of a flat collimating crystal and a bent analyzer

crystal and we have extended the results of a previous inves-

tigation of ours (Mana et al., 2004a). We have described the

distortion characterized by a constant strain gradient in crys-

tals having flat or cylindrical surfaces.

In both cases, in addition to numerical simulations, we have

also given exact solutions of the Takagi–Taupin equations in

the form of Riemann–Green integrals. We have confirmed by

both analytical and numerical results that the rocking-curve

shift does not depend on the shape of the analyzer surface, but

only on the lattice strain on the entrance surface.

Since the validity of these solutions, via convolution inte-

grals, is not limited to flat and cylindrical surfaces, we can

extend such solutions either to the case when the collimating

crystal is also cylindrically bent, or to the case when the effect
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Figure 7
Non-dispersive rocking curves. The larger profile refers to the Mo
wavelength and the other to 184 keV. The horizontal range, �20 mrad to
20 mrad, is expanded with respect to the previous �2 mrad to 2 mrad to
show the asymptotic behaviour of both rocking curves.

Figure 8
Analyzer rotation �	 from non-dispersive to dispersive geometry as a
function of curvature 1/R for T = 1.4 mm (black down triangles), T =
2.5 mm (stars) when E = 184 keV. Positive and negative values of 1/R
refer to the concave and convex cases, respectively, and have been
calculated numerically.

Figure 9
Non-dispersive (left) and dispersive (right) rocking curves for a concave Si analyzer with a fan-down distortion. Upper and lower curves refer to the
energies of 17 keV and 184 keV, respectively. Bragg planes are (220) and the relevant parameter values are given in Table 1.



of the surface roughness in X- and �-ray diffractometry and

interferometry is not negligible. Additionally, numerical

simulations open the way to a better understanding of the

operation of bent-crystal diffractometers, in particular when

finite-element solutions of the elasticity equations are inte-

grated into the Takagi–Taupin equations thus allowing us to

characterize the relevant lattice strains of the diffractometer

crystals.
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Figure 10
Non-dispersive (left) and dispersive (right) rocking curves for a convex Si analyzer with a fan-down distortion. Upper and lower curves refer to the
energies of 17 keV and 184 keV, respectively. Bragg planes are (220) and the relevant parameter values are given in Table 1.


